If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+27x=39
We move all terms to the left:
3x^2+27x-(39)=0
a = 3; b = 27; c = -39;
Δ = b2-4ac
Δ = 272-4·3·(-39)
Δ = 1197
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1197}=\sqrt{9*133}=\sqrt{9}*\sqrt{133}=3\sqrt{133}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-3\sqrt{133}}{2*3}=\frac{-27-3\sqrt{133}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+3\sqrt{133}}{2*3}=\frac{-27+3\sqrt{133}}{6} $
| -x–9=-14. | | 5x+3=6x+12 | | -49-7x=38-10x | | 2/x=4/x+1 | | 4x=-24. | | 19-2x+-3=2x+6-x | | 3/4x3/4x=12x3/4 | | 6=3(x=2) | | (1/16)x+(1/4)=(1/2) | | 24n=3(n-5) | | 14.3–5.3n=-2.19–7n | | 6=3(x=20 | | -3(x+6)=-6 | | 5/x=9/12 | | (x-2)/(x+1)=½ | | (12y+30)(1,4-0.7)=0 | | 25n=45 | | x²+20=-9x | | 17w–18=18+15w | | 7(4q+3)-9q=-17 | | 3(2-p)+4=8-3(p-2) | | 3x/5=12/8 | | 3(x-3)=(2x+1) | | 6n+3(=)4n+9 | | (5(3x+2)-x+3/5+4=2(x+7)+3x-14 | | 1/4(5x-2)=1/4x+9 | | 3(x-4)=x+18 | | -2x–7=-13. | | .6x+14=6x+14 | | 17w–18=19+15w–1 | | 4–2g=2 | | -5x=-15. |